Background

AURKA is a key regulator of the mitotic spindle, G2/M checkpoint and epithelial-mesenchymal transition1. AURKA is amplified and/or overexpressed in breast cancer and is associated with therapy resistance and worse survival2,3.

A randomized phase II trial in hormone receptor (HR)-positive, HER2-negative and triple negative (TN) metastatic breast cancer patients showed that addition of Axitinib to weekly Paclitaxel significantly improved progression-free survival (PFS) compared with Paclitaxel alone4.

Here, pretreatment archival tissues from this clinical trial were analyzed for biomarkers associated with clinical benefit from Axitinib.

Methods

- **Cohort**
 - Women with metastatic HR+ or TN breast cancer enrolled on NCT02187991

- **Retrospective Biomarker Analysis**
 - Pretreatment FFPE Tumor Biopsies
 - Tumor Whole Transcriptome Sequencing
 - Tumor Whole Exome Sequencing
 - Compare molecular features in tumors by treatment arm and response group

- **Histology**
 - Hematoxylin and eosin
 - Immunohistochemistry

- **Biomarker Analysis**
 - MYC (clone MYC41S; Cell Signaling Technology, Danvers, MA), PIK3CA (clone 3A2C7; Cell Signaling Technology), CCND1 (clone FJ7; Cell Signaling Technology), CCNE1 (clone N21/1; Cell Signaling Technology), AR (clone D-19; Cell Signaling Technology), ER (clone 6F11; Cell Signaling Technology), PR (clone 1E2; Cell Signaling Technology), ERBB2 (clone 2H3; Cell Signaling Technology), and HER2 (clone SP28; Cell Signaling Technology)

- **RNA-Seq**
 - Exome and RNA-Seq libraries
 - For 68 patients with RNA-seq data available (n = 17 Axitinib + Paclitaxel, 17 Paclitaxel alone, 34 HER2-negative tumors)

- **Enrichment Analysis**
 - Gene Set Enrichment Analysis (GSEA) of the 50 Cancer Hallmark Gene Sets from the Human Molecular Signature Database by kall and response

Results

While Genomic Alterations Were Not Significantly Associated with Response to Axitinib + Paclitaxel

Conclusions:

Patients whose breast cancers had increased MYC expression and high MYC activation derived greater clinical benefit from Axitinib + Paclitaxel than from Paclitaxel alone.

EMT signaling did not preclude prolonged response (≥12 months PFS) to Axitinib + Paclitaxel.

References

Acknowledgements

This work was supported by the National Cancer Institute of the National Institutes of Health under Award Number R01CA223572.

Author contact: steph@tgen.org